
A Decidable Spatial Logic with
Cone-Shaped Cardinal Directions

Angelo Montanari1, Gabriele Puppis2, and Pietro Sala1

1 Department of Mathematics and Computer Science, Udine University, Italy
{angelo.montanari,pietro.sala}@dimi.uniud.it

2 Computing Laboratory, Oxford University, England
gabriele.puppis@comlab.ox.ac.uk

Abstract. We introduce a spatial modal logic based on cone-shaped
cardinal directions over the rational plane and we prove that, unlike
projection-based ones, such as, for instance, Compass Logic, its satis-
fiability problem is decidable (PSPACE-complete). We also show that
it is expressive enough to subsume meaningful interval temporal logics,
thus generalizing previous results in the literature, e.g., its decidability
implies that of the subinterval/superinterval temporal logic interpreted
over the rational line.

1 Introduction

Spatial reasoning has both a strong theoretical relevance and applications in
many areas of computer science, including robotics, natural language processing,
geographical information systems [1, 5, 12]. However, despite the widespread
interest in the topic, few techniques have been developed to automatically (and
efficiently) reason about spatial relations over infinite structures. As a matter of
fact, spatial reasoning has been mainly investigated in quite restricted algebraic
settings.

In this paper, we introduce a novel spatial modal logic, called Cone Logic,
which allows one to reason about cone-shaped directional relations between
points in the rational plane. While the satisfiability problem for spatial modal
logics with projection modalities turns out to be highly undecidable [7, 9],
we prove that Cone Logic enjoys a decidable satisfiability problem (in fact,
PSPACE-complete) by taking advantage of a suitable filtration technique. We
also show that Cone Logic subsumes interesting interval temporal logics such
as the temporal logic of subintervals/superintervals, thus generalizing previous
results in the literature [3] and basically disproving a conjecture by Lodaya [6].

2 Syntax and semantics of Cone Logic

In this section, we introduce syntax and semantics of Cone Logic. Let P = Q×Q
denote the rational plane and let p = (x,y) be one of its points. We denote by

{angelo.montanari,pietro.sala}@dimi.uniud.it
gabriele.puppis@comlab.ox.ac.uk

p

UR(p)UL(p)

LR(p)LL(p)

p

North

West East

South

Fig. 1. The four quadrants and the cone-shaped cardinal directions.

LL(p), LR(p), UL(p), and UR(p) the open lower-left, lower-right, upper-left, and
upper-right quadrants of p, respectively, which are defined as follows:

LL(p) =
{
(x ′,y ′) : x ′ < x, y ′ < y

}
LR(p) =

{
(x ′,y ′) : x ′ > x, y ′ < y

}
UL(p) =

{
(x ′,y ′) : x ′ < x, y ′ > y

}
UR(p) =

{
(x ′,y ′) : x ′ > x, y ′ > y

}
.

Note that, up to a rotation of the axes, these open quadrants can be viewed
as the Frank’s cone-shaped cardinal directions ‘North’, ‘West’, ‘East’, ‘South’
[4] (see Figure 1). Similarly, one can denote by LL+(p), LR+(p), UL+(p), and
UR+(p) the semi-closed quadrants of p, which are defined in the natural way,
e.g., LL+(p) = {(x ′,y ′) : x ′ 6 x, y ′ 6 y} \ {p}.

Given a set Prop of propositional variables, formulas of Cone Logic are built
up from Prop using the boolean connectives ¬ and ∨ and eight modal operators

, , , , +, +, +, and +. The size |ϕ| of a formula ϕ is given
by the number of its subformulas (for instance, a ∨ ¬ ¬b is a formula
of size 7). Formulas of Cone Logic are evaluated over (labeled regions of) the
rational plane. Precisely, let P = (P,σ) be a labeled region, where P ⊆ P is a
non-empty subset of the rational plane and σ : P → P(Prop) is a labeling
function. We define the semantics of a formula with respect to a distinguished
initial point p ∈ P as follows:

• P,p � a iff a ∈ σ(p),

• P,p � ¬ϕ iff P,p 6� ϕ,

• P,p � ϕ1 ∨ ϕ2 iff P,p � ϕ1 or P,p � ϕ2,

• P,p � ϕ (resp., P,p � +ϕ) iff P contains a point q such that q ∈ LL(p)
(resp., q ∈ LL+(p)) and P,q � ϕ (and similarly for the other modal operators

, , , +, +, and +).

We further use shorthands such as ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ = ¬ ¬ϕ,
ϕ = ϕ, ϕ = ϕ, ϕ = ϕ, ϕ = ϕ, etc.

Cone Logic is well-suited for expressing spatial relationships between points,
curves, and regions inside the rational plane. Below, we give an intuitive account
of its expressiveness through a couple of examples. To begin with, we show how
to define an a-labeled open rectangular region, whose edges are aligned with the
x- and y-axes, by means of a Cone Logic formula:

...

b1 ...

bn ...

...

bn ...

b1 ...

...

b1 ...

bn ...

a

c
b1

bn

Fig. 2. A labeled rational plane satisfying ϕ<.

ϕ = a ∧ b ∧ c ∧ d ∧ e

∧ (a → a ∧ a ∧ a ∧ a) ∧ (¬a ↔ b ∨ c ∨ d ∨ e)
∧ (b → b) ∧ (c → c) ∧ (d → d) ∧ (e → e).

The second example uses two symmetric modal operators, namely, and ,
to enforce non-trivial spatial relationships between labeled regions of the ra-
tional plane. Let Prop be a signature containing n + 2 propositional variables
a,b1, ...,bn, c and let < be the partial order over Prop such that a < bi < c,
for every 1 6 i 6 n, and bi 6< bj, for every pair of distinct indices 1 6 i, j 6 n.
We shortly write p 6 q (resp., p > q) whenever p = q or p < q (resp., p > q).
Consider now the (Hintikka-like) formula induced by the partial order <:

ϕ< =
∨

p∈Prop
p ∧

∧
p6=q

¬(p ∧ q)

∧
∧

p∈Prop

(
p →

∧
q6p

q ∧
∧
q>p

q ∧
∨
q6p

q ∧
∨
q>p

q
)

.

The unique (up to homeomorphism) labeled rational plane that satisfies ϕ< is
depicted in Figure 2. Notice that (i) for every propositional variable bi, with
1 6 i 6 n, the bi-labeled region is an (infinite) union of disjoint open rectangles
(in fact, the coordinates of their corners are given by pairs of irrational numbers)
and (ii) the bi-labeled open rectangles are arranged densely in the rational plane,
that is, for all indices 1 6 i, j,k 6 n, with i 6= j, all bi-labeled points (x1,y1),
and all bj-labeled points (x2,y2), with x1 < x2 and y1 > y2, there is a bk-labeled
point (x,y) such that x1 < x < x2 and y1 > y > y2.

The satisfiability problem for Cone Logic consists of deciding whether a given
formula ϕ holds at some point of a labeled region of the rational plane. In
particular, we are interested in satisfiability problems under interpretation over
(open or closed) rectangular regions, namely, regions of the form I×J, with I and J

being two fixed (open or closed) intervals of the rational line3. As a matter of fact,
note that the whole rational plane P is homeomorphic to any open rectangular
region of the form I × J, with I = (x0, x1) and J = (y0,y1). Moreover, any
formula ϕ interpreted over an open rectangular region of the form I × Q, with
I = (x0, x1), can be rewritten into an equi-satisfiable formula ϕ ′ interpreted over
the semi-closed rectangular region I ′ ×Q, where I ′ = [x0, x1]. Taking advantage
of the reducibility of the satisfiability problem over open rectangular regions to
that over semi-closed rectangular regions, we can restrict our attention to labeled
regions of the form P = (I × Q,σ), where I is a closed (non-singleton) interval
(hereafter, we call such structures labeled stripes).

The relationships between Cone Logic and spatial logics with projection
modalities deserve a little discussion. Projection-based spatial logics (most no-
tably, Compass Logic [13]) are two-dimensional modal logics whose accessibility
relations allow one to move along one of the two coordinates while keeping the
other coordinate constant. On the one hand, Cone Logic inherits from projection-
based modal logics some of their desirable features. For instance, it allows one to
write suitable formulas that constrain labels to occur along some distinguished
axes, e.g., the formula a ∧ ¬a ∧ ¬a ∧ ¬a forces a to hold at
the origin or at some point over the positive x-axis. On the other hand, unlike
projection-based modal logics, only a bounded number of constraints ‘along the
axes’ can be enforced by Cone Logic. We will see that such a limitation can be
traded for a positive decidability result.

Hereafter, for the sake of simplicity, we constrain Cone Logic formulas to
quantify over open quadrants only, that is, to make use of the modal operators

, , , and only. However, the achieved results (in particular, the tree
pseudo-model property proved in Section 4 and the PSPACE decision procedure
described in Section 5) can be naturally generalized to the case of unrestricted
Cone Logic formulas.

3 Basic machinery: types, dependencies, and shadings

Let us fix a labeled region P = (P,σ) and a formula ϕ of Cone Logic. In the
sequel, we compare points in P with respect to the set of subformulas of ϕ they
satisfy. To do that, we introduce the key notions of ϕ-atom, ϕ-type, ϕ-cluster,
and ϕ-shading.

First of all, we denote by Cl(ϕ) the set of all subformulas of ϕ and of their
negations (we identify ¬¬α with α, ¬ α with ¬α, etc.). A ϕ-atom is any
non-empty set A ⊆ Cl(ϕ) such that (i) for every formula α ∈ Cl(ϕ), α ∈ A iff
¬α 6∈ A and (ii) for every formula γ = α ∨ β ∈ Cl(ϕ), γ ∈ A iff α ∈ A or
β ∈ A (intuitively, a ϕ-atom is a maximal locally consistent set of subformulas
of ϕ). The cardinality of Cl(ϕ) is linear in |ϕ|, while the number of ϕ-atoms is

3 Hereafter, square brackets are used to denote closed intervals, e.g., [0, 1], while round
brackets are used to denote open intervals, e.g., (0, 1). Semi-open intervals are rep-
resented by mixing the two notations, e.g., [0, 1).

(at most) exponential in |ϕ|. We then associate with each point p ∈ P the set of
all formulas α ∈ Cl(ϕ) such that P,p � α. Such a set is called ϕ-type of p and
it is denoted by TypeP(p). We have that every ϕ-type is a ϕ-atom, but not vice
versa.

Given an atom A, we denote by ReqLL(A) (resp., ReqLR(A), ReqUL(A),
ReqUR(A)) the set of all formulas α ∈ Cl(ϕ) such that α ∈ A (resp., α ∈ A,
α ∈ A, α ∈ A); similarly, we denote by ObsLL(A) (resp., ObsLR(A),

ObsUL(A), ObsUR(A)) the set of all formulas α such that α ∈ A and α ∈ Cl(ϕ)

(resp., α ∈ Cl(ϕ), α ∈ Cl(ϕ), α ∈ Cl(ϕ)). We call formulas belonging
to one of the first (resp., last) four sets requests (resp., observables). Taking
advantage of these sets, for each direction D ∈ {LL,LR,UL,UR}, we define two
transitive relations D−� and D99K between atoms as follows:

A D−�A ′ iff

{
ReqD(A) ⊇ ReqD(A ′) ∪ ObsD(A ′)

ReqD̄(A ′) ⊇ ReqD̄(A) ∪ ObsD̄(A)

A D99KA ′ iff

{
ReqD(A) ⊇ ReqD(A ′)

ReqD̄(A ′) ⊇ ReqD̄(A)

where D̄ denotes the direction opposite to D (e.g., LL = UR). Note that A D−�A ′
(resp., A D99KA ′) iff A ′ D−�A (resp., A ′ D99KA). Moreover, the relations D−� and

D99K satisfy the view-to-type dependency property, namely, for every pair of points
p,q in P and every direction D ∈ {LL,LR,UL,UR},

q ∈ D(p) implies TypeP(p) D−� TypeP(q)

D(q) ⊆ D(p) implies TypeP(p) D99K TypeP(q).

Below, we introduce analogous notions for regions. First, we define a ϕ-
cluster as any non-empty set C of atoms. Then, for a cluster C and a direction
D ∈ {LL,LR,UL,UR}, we denote by ReqD(C) and ObsD(C), respectively, the set⋃
A∈C ReqD(A) and the set

⋃
A∈C ObsD(A). Moreover, given a pair of clusters

C,C ′, we write C D−�C ′ (resp., C D99KC ′) whenever A D−�A ′ (resp., A D99KA ′)
holds for all pairs of atoms A ∈ C and A ′ ∈ C ′. Finally, we associate with each
non-empty region P ′ of P its ϕ-shading, which is defined as the set TypeP(P ′) ={
TypeP(p) : p ∈ P ′

}
of the ϕ-types of all points of P ′.

Note that, for every labeled region P = (P,σ), the formula ϕ holds at some
point p of P iff the shading TypeP(P) contains an atom A such that ϕ ∈ A.
Hereafter, we shall omit the argument ϕ, thus calling a ϕ-atom (resp., a ϕ-type,
a ϕ-cluster, etc.) simply an atom (resp., a type, a cluster, etc.).

4 From the rational plane to the infinite binary tree

In this section, we aim at establishing a tree (pseudo-)model property for sat-
isfiable formulas of Cone Logic. This is done by introducing a suitable notion
of decomposition of a labeled region (more precisely, of a labeled stripe) and by
iteratively applying it in order to obtain an infinite decomposition tree structure
that correctly represents the original model.

C1

A2

C3

C4

(a)

C1

A2

C3

A3

C3

C1

A1

C1

A2

C3

C1

A2

C3

A3

C3

C1

A1

C1

A ′2

C3

C1

A ′2

C3

A3

C3

C1

A1

C1

A2

C3

(b)

(c)

Fig. 3. Shading sequences (a), stripe expressions (b), and decompositions (c).

4.1 Shading sequences and stripe expressions

To start with, we consider the shadings of the vertical straight lines inside a
labeled rational plane. A shading sequence is a non-empty finite sequence S of
atoms and clusters such that, for every 1 6 i 6 |S|, if S(i) is an atom, then
1 < i < |S| and both S(i− 1) and S(i+ 1) are clusters. Shading sequences allow
one to represent the types that appear along some vertical straight lines of a
labeled rational plane. As an example, Figure 3(a) depicts a labeled vertical line
with an associated shading sequence S = C1A2 C3 C4.

To represent the shadings of the two vertical borders of a labeled stripe, we
introduce the notion of stripe expression, which is a pair E = (L,R) of (left and
right) shading sequences having equal length (|L| = |R|) and such that, for every
1 6 i 6 |E| (= |L| = |R|), L(i) is an atom (resp., a cluster) iff R(i) is an atom
(resp., a cluster). We call any pair of the form

(
L(i),R(i)

)
, with 1 6 i 6 |E|,

a matched pair. As an example, Figure 3(b) depicts the left border and the
right border of a labeled stripe, together with the associated stripe expression
E = (L,R), where L = C1A2 C3A3 C3 and R = C1A1 C1A2 C3. We say that
an atom A is featured by the left (resp., right) sequence of a stripe expression
E = (L,R) if there is an index 1 6 i 6 |E| such that A = L(i) (resp., A = R(i)) or
A ∈ L(i) (resp., A ∈ R(i)), depending on whether L(i) (resp., R(i)) is an atom
or a cluster. By a slight abuse of notation, we denote by

⋃
16i6|E| L(i) (resp.,⋃

16i6|E| R(i)) the set of all atoms featured by the left (resp., right) sequence of
the stripe expression E = (L,R).
For every labeled stripe P, there is a stripe expression E whose left (resp., right)
sequence features all and only the types of the points along the left (resp., right)
border of P. However, for a given stripe expression E, there might exist no labeled

stripe P such that the shading of the left (resp., right) border of P coincides with
the set of atoms featured by the left (resp., right) shading sequences of E. In the
following, we show how to get rid of such a problem. As a first step, we enforce
suitable consistency conditions on any stripe expression E = (L,R):
(C1) for every 1 6 i < j 6 |E|, L(i) D99KL(j) and R(i) D99KR(j) hold for both

D = UL and D = UR;
(C2) for every 1 6 i 6 |E|, if L(i) and R(i) are clusters, then L(i) D99KL(i) and

R(i) D99KR(i) hold for both D = UL and D = UR;
(C3) for every 1 6 i 6 |E|, L(i) D99KR(i) (and hence R(i) D̄99KL(i)) holds for both

D = LR and D = UR;
(C4) for every 1 6 i 6 |E|, if L(i) and R(i) are atoms (resp., clusters), then

L(i) LR−�R(j) and L(i) UR−�R(k) (and hence R(j) UL−�L(i) and R(k) LL−�L(i))
hold for all 1 6 j < i (resp., 1 6 j 6 i) and all i < k 6 |L| (resp.,
i 6 k 6 |L|).

We compare stripe expressions with respect to their generality by introduc-
ing a suitable partial order 6. Given two stripe expressions E = (L,R) and
E ′ = (L ′,R ′), we write E 6 E ′ if |E| = |E ′| and, for every index 1 6 i 6 |E|,
we have either L(i) = L ′(i) and R(i) = R ′(i), or L(i) ⊆ L ′(i) and R(i) ⊆ R ′(i),
depending on whether L(i), R(i), L ′(i), R ′(i) are atoms or clusters. Unless other-
wise stated, we tacitly assume that a stripe expression is maximal with respect
to the above-defined partial order 6. Note that a cluster appearing in a (max-
imal) stripe expression may contain an exponential number of distinct atoms;
however, thanks to consistency conditions, the set of all its atoms can be char-
acterized in terms of the sets of its requests and observables, namely, for every
(maximal) stripe expression E = (L,R), every index 1 6 i 6 |E|, and every atom
A, we have that A belongs to the cluster C = L(i) (resp., C = R(i)) if and
only if ReqD(A) = ReqD(C) and ObsD(A) ⊆ ObsD(C) hold for all directions
D ∈ {LL,LR,UL,UR}. This allows us to succinctly represent the two clusters of a
matched pair of a (maximal) stripe expression by the sets of their requests and
observables, whose size is linear in |ϕ|. In addition, we can assume every (max-
imal) stripe expression E = (L,R) to contain pairwise distinct matched pairs(
L(i),R(i)

)
. From the above, it follows that the length |E| of any (maximal) stripe

expression E = (L,R) is at most 4 · |ϕ|. At worst, for every pair of distinct indices
1 6 i < j 6 |E|, if L(i), R(i), L(j), and R(j) are clusters, then, for both D = UR

and D = UL, we have ReqD(L(j)) ⊆ ReqD(L(i)), ReqD(R(j)) ⊆ ReqD(R(i)),
and either ReqD(L(j)) (ReqD(L(i)) or ReqD(R(j)) (ReqD(R(i)), and in both
shading sequences there exist an atom between any pair of consecutive clusters.
Hence, every (maximal) stripe expression can be represented using polynomial
space with respect to |ϕ|.

4.2 Recursive decompositions of stripes

Roughly speaking, conditions C1-C4 above provide us with a guarantee that the
natural spatial interpretation of a stripe expression E is consistent with view-to-
type dependencies. To enforce the fulfillment of the existential requests of the

atoms featured by the two shading sequences of E, we further need to introduce a
suitable notion of decomposition. We start by dividing a given labeled stripe into
a pair of (thiner) adjacent labeled sub-stripes and then we recursively apply the
decomposition to every emerging sub-stripe. This yields an infinite tree-shaped
decomposition of the initial structure, where each vertex of the tree represents a
labeled (sub-)stripe (and, thus, it is associated with a stripe expression) and each
edge represents a containment relationship between two labeled (sub-)stripes.

To start with, we introduce a suitable equivalence relation between shading
sequences. Two shading sequences S and S ′ are said to be equivalent if
i) every cluster S(i) of S (resp., S ′(i ′) of S ′) is also a cluster of S ′ (resp., S);
ii) every atom S(i) of S (resp., S ′(i ′) of S ′) either is an atom of S ′ (resp., S)

or it belongs to the two adjacent clusters S(i − 1) = S(i + 1) in S (resp.,
S ′(i ′ − 1) = S ′(i ′ + 1) in S ′).

As an example, the shading sequences S = C1A1 C1 C2 and S ′ = C1 C2 C2 are
equivalent, provided that A1 ∈ C1, while the shading sequences S = C1A1 C2 C2

and S ′ = C1 C2 C2 are not equivalent (unless A1 ∈ C1 and C1 = C2).
Decompositions of stripe expressions are defined as follows. Let E = (L,R)

be a stripe expression. A decomposition of E is any pair of stripe expressions
(E1,E2), with E1 = (L1,R1) and E2 = (L2,R2), such that the following matching
conditions hold:
(M1) L1 and L are equivalent;
(M2) R2 and R are equivalent;
(M3) R1 and L2 are equivalent.
We say that a matched pair

(
L(i),R(i)

)
of the stripe expression E corresponds

to a matched pair
(
L1(i1),R1(i1)

)
(resp.,

(
L2(i2),R2(i2)

)
) of the stripe expres-

sion E1 (resp., E2) under the decomposition (E1,E2) of E if there exists an index
1 6 i2 6 |E2| (resp., 1 6 i1 6 |E1|) such that (i) L(i) ∈= L1(i1), (ii) R(i)

∈
= R2(i2),

and (iii) R1(i1)
∈
= L2(i2), where ∈= denotes either the equality relation =, the

membership relation ∈, or the containment relation 3 depending on the form of
its left and right arguments (namely, whether they are atoms or clusters). As an
example, Figure 3(c) depicts a decomposition of the stripe expression E = (L,R),
where L = C1A2 C3A3 C3 and R = C1A1 C1A2 C3. Note that, under such a
decomposition, the matched pair (C3,C1) of E corresponds to the matched pairs
(C3,C1), (A3,A ′2), (C3,C3) of E1 and to the matched pairs (C1,C1), (A ′2,A1),
(C3,C1) of E2. By iteratively applying decompositions, starting from a given
stripe expression, one obtains an infinite tree-shaped structure, called decompo-
sition tree.

Definition 1. A decomposition tree is an infinite complete binary labeled tree
T = (V,E, ↓1, ↓2), where
• V is the set of tree vertices;
• ↓1 and ↓2 are the two successor relations;
• E is a labeling function associating a stripe expression E(v) with each v ∈ V

such that the pair
(
E(↓1(v)),E(↓2(v))

)
is a decomposition of E(v).

Note that, for every pair of vertices v and v ′ at the same level of a decomposition
tree T = (V,E, ↓1, ↓2), if v ′ is right-adjacent to v (even without being its sibling)
and E(v) = (Lv,Rv) and E(v ′) = (Lv′ ,Rv′) are the associated stripe expressions,
then the sequence Rv turns out to be equivalent to the sequence Lv′ .

Let T = (V,E, ↓1, ↓2) be a decomposition tree. We impose suitable conditions
on T which guarantee that every existential request of every atom featured by a
stripe expression E(v) is eventually fulfilled by an observable of an atom featured
by a (possibly different) stripe expression E(v ′). Given a stripe expression E(v) =
(L,R), let us denote by E(v)[L] (resp., E(v)[R]) its left shading sequence L (resp.,
right shading sequence R). In the following, we consider a generic vertex v of
T and we look at the right-oriented (i.e., LR- and UR-oriented) requests of the
atoms featured by E(v)[L]; symmetrically, we look at the left-oriented (i.e., LL-
and UL-oriented) requests of the atoms featured by E(v)[R].

Let us consider the UR-requests of a left shading sequence E(v)[L]. Given a
vertex v of T, an index 1 6 i 6 |E(v)|, and a subformula α ∈ ReqUR

(
E(v)[L](i)

)
,

we say that the UR-request α is

(F1) postponed at position i of vertex v, if we have α ∈ ReqUR
(
E(v)[R](i)

)
;

(F2) fulfilled at position i of vertex v, if we have α ∈ ObsUR
(
E(v)[R](j)

)
for some

index i 6 j 6 |E(v)|;
(F3) partially fulfilled at position i of vertex v, if there is an index 1 6 i1 6

|E(↓1(v))| such that (i) the UR-request α is fulfilled at position i1 of vertex
↓1(v) and (ii) the matched pair

(
E(v)[L](i),E(v)[R](i)

)
of E(v) corresponds

to the matched pair
(
E(↓1 (v))[L](i1),E(↓1 (v))[R](i1)

)
of E(↓1 (v)) under

the decomposition
(
E(↓1(v)),E(↓2(v))

)
of E(v).

Similar definitions can be given for the LR-requests of a left shading sequence
E(v)[L] and for the UL-/LL-requests of a right shading sequence E(v)[R].

We say that a decomposition tree T is globally fulfilled if, for every vertex
v, every index 1 6 i 6 |E(v)|, and every direction D ∈ {LR,UR} (resp., D ∈
{UL,LL}), the following conditions hold:

(G1) if v is the root, then ReqD
(
E(v)[R](i)

)
= ∅ (resp., ReqD

(
E(v)[L](i)

)
= ∅);

(G2) for every subformula α ∈ ReqD
(
E(v)[L](i)

)
(resp., ReqD

(
E(v)[R](i)

)
) and

every infinite path π that starts at v, there is a vertex v ′ in π (possibly v ′ =
v) such that either α 6∈ ReqD

(
E(v ′)[L](i ′)

)
(resp., α 6∈ ReqD

(
E(v ′)[R](i ′)

)
)

for all positions i ′ of vertex v ′ or α is postponed (F1), fulfilled (F2), or
partially fulfilled (F3) at some position i ′ of vertex v ′.

We are now ready to establish a tree (pseudo-)model property for satisfiable
formulas of Cone Logic. The next theorem states that (i) given a globally fulfilled
decomposition tree T, there is a labeled stripe P = (I × Q,σ) whose shading
coincides with the set of all atoms that are featured by the expressions of T

(soundness) and (ii) given a labeled stripe P = (I × Q,σ), there is a globally
fulfilled decomposition tree T whose expressions feature (at least) the types of
all points of P (completeness). The proof is omitted for the lack of space (it will
be included in the extended version of the paper).

Theorem 1. Soundness. For every globally fulfilled decomposition tree T =
(V,E, ↓1, ↓2), there is a labeled stripe P = (I×Q,σ) such that

TypeP

(
I×Q

)
=

⋃
v∈V

16i6|E(v)|

(
E(v)[L](i) ∪ E(v)[R](i)

)
.

Completeness. Conversely, for every labeled stripe P = (I × Q,σ), there is a
globally fulfilled decomposition tree T = (V,E, ↓1, ↓2) such that

TypeP

(
I×Q

)
⊆

⋃
v∈V

16i6|E(v)|

(
E(v)[L](i) ∪ E(v)[R](i)

)
.

5 Reducing Cone Logic to a proper fragment of CTL

In this section we briefly describe a decision procedure that solves the satis-
fiability problem for Cone Logic taking advantage of the tree (pseudo-)model
property stated in Section 4. According to such a property, the problem of es-
tablishing whether or not a Cone Logic formula ϕ is satisfiable can be reduced
to the problem of checking the existence of a globally fulfilled decomposition
tree T that features a (ϕ-)atom A such that ϕ ∈ A. The effectiveness of such
an approach stems from the fact that the properties that characterize a globally
fulfilled decomposition tree can be expressed in a proper fragment of CTL. The
satisfiability problem for Cone Logic can thus be decided in (at most) exponential
time [8]. Given the state of the art of the decision procedures for CTL, deciding
the satisfiability problem for Cone Logic turns out to be quite efficient from a
practical point of view. In the following, we show that the satisfiability problem
for Cone Logic is actually in PSPACE. In the next section, we will prove that
the PSPACE complexity bound is strict, namely, that the satisfiability problem
for Cone Logic is PSPACE-hard.

Theorem 2. The satisfiability problem for Cone Logic, interpreted over the ra-
tional plane, is in PSPACE.

Proof (sketch). We first show how to reduce the satisfiability problem for a Cone
Logic formula ϕ to the satisfiability problem for a suitable CTL formula −�ϕ, which
is a conjunction of CTL formulas of the forms λ, AG λ, EF λ, AG EX λ, AG δ, and
AG (λ → AF δ), where λ is a propositional formula and δ is a CTL formula that
uses the modal operator AX in a positive way only ((and it has no occurrences
of other modal operators). Let us call these formulas basic CTL formulas.
To start with, we introduce three distinguished propositional variables, say, 0, 1,
and 2, to encode the two successor relations ↓1 and ↓2 of a decomposition tree T

in a labeled tree structure T . For each vertex v of T , we associate either 0, 1, and
2 with v depending on whether v is the root, v =↓1 (u), or v =↓2 (u) for some
parent vertex u. Such a labeling can be enforced by means of a suitable con-
junction of basic CTL formulas over the signature {0, 1, 2} (see below). Next, the
stripe expressions associated with T vertices can be encoded as follows. Since the
number of shading sequences can be exponential in |ϕ|, we need to encode one by

one the elements that belong to each atom featured by each shading sequence.
To this end, we introduce a new set Σ of propositional variables latomi , lclusteri ,
ratomi , rclusteri , lobsi,α,D, lreqi,α,D, robsi,α,D, and rreqi,α,D, for every index 1 6 i 6 4 · |ϕ|,
every subformula α of ϕ, and every direction D ∈ {LL,LR,UL,UR}. Intuitively,
the propositional variable latomi (resp., lclusteri) holds at a given vertex v of T if
and only if the position i of the left shading sequence E(v)[L] in T contains an
atom (resp., a cluster). Similarly, the propositional variable lobsi,α,D (resp., lreqi,α,D)
holds at a given vertex v of T if and only if the subformula α belongs to the set
of observables ObsD

(
E(v)[L](i)

)
(resp., the set of requests ReqD

(
E(v)[L](i)

)
) of

the atom/cluster at position i of the left shading sequence E(v)[L]. Analogous
encodings are given for the right shading sequence E(v)[R]. Since the number of
subformulas α of ϕ is linear in |ϕ| and the length of a (maximal) stripe expres-
sion E(v) is at most 4 · |ϕ|, the above-defined propositional variables allow one
to represent E(v) in polynomial space. The (local) consistency conditions C1–C4
can be easily expressed by means of a propositional formula λC1–C4 over the
signature Σ and hence they can be enforced globally in the labeled tree struc-
ture T by requiring that the basic CTL formula AG λC1–C4 holds at the root
of T . Similarly, the matching conditions M1–M3, which impose further restric-
tions on the stripe expressions associated with pairs of adjacent vertices, can be
expressed by means of a basic CTL formula of the form AG δM1–M3 over the
signature {0, 1, 2} ∪ Σ, where δM1–M3 contains only positive occurrences of the
modal operator AX (and no occurrences of other modal operators). As for the
conditions of global fulfillment, we can enforce Condition G1 by a simple propo-
sitional formula λG1 over the signature Σ and Condition G2 by a conjunction of
basic CTL formulas of the form AG (λi,D,α → AF δi,D,α), where i ranges over
{1, ..., 4 · |ϕ|}, D ranges over {LL,LR,UL,UR}, α is a subformula of ϕ, λi,D,α is
a propositional formula over the signature Σ, and δi,D,α is a CTL formula over
the signature {0, 1, 2} ∪ Σ that contains only positive occurrences of the modal
operator AX (and no occurrences of other modal operators). Finally, the exis-
tence of a (ϕ-)atom A in T such that ϕ ∈ A can be enforced by a basic CTL
formula of the form EF λϕ. The size of all the above formulas is polynomial in
|ϕ|. Altogether, we have that for any formula ϕ of Cone Logic, we can (effec-
tively) build an equi-satisfiable conjunction of basic CTL formulas −�ϕ over the
signature {0, 1, 2} ∪ Σ in polynomial time.

We conclude the sketch of the proof by outlining a PSPACE procedure that
checks whether the resulting formula −�ϕ is satisfiable or not. First, we write −�ϕ as
the conjunction of the following three CTL formulas:
−�ϕtree = (0 ∧ ¬1 ∧ ¬2) ∧ AG AX

(
¬0 ∧ ¬(1 ∧ 2)

)
∧ AG

(
EX 1 ∧ EX 2

)
−�ϕpath = AG λC1–C4 ∧ AG δM1–M3 ∧ λG1 ∧

∧
i,D,α

AG
(
λi,D,α → AF δi,D,α

)
−�ϕinit = EF λϕ

The formula −�ϕtree defines a labeled tree structure T where each vertex has two
distinguishable successors, the formula −�ϕpath verifies that T correctly represents
a globally fulfilled decomposition tree T, and the formula −�ϕinit checks that T

features an atom A such that ϕ ∈ A. Since −�ϕpath contains only positive oc-

currences of the modal operators AG , AF , and AX , we can turn −�ϕpath into
an equivalent LTL formula −�ϕLTL

path by replacing all occurrences of AG , AF , and
AX by G, F, and X, respectively. Formally, we have that for any labeled tree
structure T , −�ϕ holds at the root of T if and only if (i) −�ϕtree and −�ϕinit hold at
the root of T and (ii) −�ϕLTL

path holds along all infinite paths of T . By taking ad-
vantage of the structure of −�ϕLTL

path (no G operator is nested into an F operator),
it is possible to show that there exists a deterministic Büchi automaton Apath ,
which can be computed in polynomial time4, that recognizes the ω-language
of all linear models of −�ϕLTL

path. Given the automaton Apath over the input al-
phabet {0, 1, 2} ×P(Σ), we build a non-deterministic Büchi automaton A∃path
that recognizes the projection language π0,1,2

(
Lω(Apath)

)
. We have that A∃path

recognizes the ω-language {0} · {1, 2}ω if and only if there exists a labeled tree
structure T that satisfies both −�ϕtree and −�ϕLTL

path . Since the inclusion problem for
regular ω-languages is in PSPACE [10], this gives a procedure that decides, in
polynomial space, whether both formulas −�ϕtree and −�ϕpath hold at the root of
some labeled tree structure T . Verifying whether −�ϕinit holds at the root of T as
well amounts to solve a reachability problem over a slightly modified version of
the non-deterministic Büchi automaton A∃path . 2

6 Cone Logic and interval temporal logics

In this section, we prove that Cone Logic subsumes an interesting interval tempo-
ral logic, calledDD̄YȲ-logic, which comprises four modal operators 〈D〉, 〈D̄〉, 〈Y〉,
and 〈Ȳ〉. Intuitively, these operators quantify over sub-intervals, super-intervals,
‘younger intervals’, and ‘elder intervals’. From now on, we assume that the un-
derlying temporal domain is (homeomorphic to) the linear ordering (Q,<) of
the rational numbers and that intervals are non-singleton closed convex subsets
of such an ordering, namely, sets of the form [x,y] = {z ∈ Q : x 6 z 6 y}, where
x,y ∈ Q and x < y. We shortly denote by I the set of all intervals over (Q,<).

The four interval relations D, D̄, Y, and Ȳ and the semantics of DD̄YȲ-
logic are defined as follows. Let I = [x,y] and I ′ = [x ′,y ′] be two intervals. If
x < x ′ < y ′ < y, then we say that I ′ is a (strict) sub-interval of I, or, conversely,
that I is a (strict) super-interval of I ′. Similarly, if x ′ > x and y ′ > y, we say
that I ′ is younger than I, or, conversely, that I is elder than I ′. It is worth
noticing that the younger-interval relation Y and the elder-interval relation Ȳ
can be characterized as unions of standard Allen’s relations [2] (for instance,
the relation Y is the union of the ‘later’ relation L, the ‘immediately after’, or
‘meet’, relation A, and the ‘overlap’ relation O). As for the semantics of DD̄YȲ-
logic, let P = (I,σ) be an interval structure, where σ is a valuation function that

4 First, we turn each conjunct of −�ϕLTL
path into an equivalent deterministic Büchi au-

tomaton and then we compute the product automaton for the whole formula −�ϕLTL
path.

The resulting automaton has size polynomial in |−�ϕLTL
path|, provided that the transition

labels are symbolically represented by means of suitable propositional formulas over
the signature {0, 1, 2} ∪ Σ.

x
=
y

π

>

⊥

Fig. 4. A π-labeled region delimiting (pseudo)interval-points.

maps intervals in I to sets of propositional variables. The formulas of DD̄YȲ-logic
are built up from propositional variables using the boolean connectives and the
modal operators 〈D〉, 〈D̄〉, 〈Y〉, and 〈Ȳ〉, with the obvious semantics (for instance,
P, I � 〈D〉ϕ holds iff there is a sub-interval I ′ of I such that P, I ′ � ϕ).

In [6] Lodaya conjectured the undecidability of the satisfiability problem for
the fragment of DD̄YȲ-logic that features the two modal operators 〈D〉 and 〈D̄〉
only when interpreted over various classes of linear orderings. Here, we partially
disprove such a conjecture by showing that formulas of DD̄YȲ-logic, interpreted
over the rational line, can actually be translated into equi-satisfiable formulas
of Cone Logic. Such a translation exploits the fact that there exists a natural
bijection between intervals I = [x,y] in I and points p = (x,y), with x < y,
of the rational plane (hereafter, we call these points interval-points). Moreover,
the region of all and only the interval-points of the rational plane can somehow
be described by a suitable formula of Cone Logic. More precisely, let >, ⊥, and
π be three fresh propositional variables and let ψπ be the following formula of
Cone Logic:
ψπ = (> ∨ ⊥ ∨ π) ∧ (¬> ∨ ¬⊥) ∧ (¬> ∨ ¬π) ∧ (¬⊥ ∨ ¬π)

∧ (> → > ∧ >) ∧ (⊥ → ⊥ ∧ ⊥)

∧ (π → +> ∧ +⊥) ∧ (π ∧ π → π ∨ π ∨ π).
Consider now a labeled rational plane P = (P,σ) that satisfies ψπ. We can
partition P in three regions, namely, (i) the region >P of all >-labeled points,
(ii) the region ⊥P of all ⊥-labeled points, and (iii) the region πP of all π-labeled
points (see Figure 4). The region πP has the form of a ‘thin’ oriented trajectory
inside the rational plane such that, for every pair of points p,q ∈ πP, there
exists another point r ∈ πP such that either r ∈ UR(p) and q ∈ UR(r), or
r ∈ LL(p) and q ∈ LL(r). Even though we cannot claim that πP coincides with
the diagonal {(x, x) : x ∈ Q} and >P coincides with the set of all interval-points
of the rational plane, we can prove the following proposition.

Proposition 1. For every formula ϕ of Cone Logic and every labeled rational
plane P = (P,σ) that satisfies ϕπ = ϕ ∧ ψπ, there is a labeled rational plane
P ′ = (P,σ ′) that satisfies ϕπ and such that (i) the π-labeled region πP′ coincides
with the diagonal {(x, x) : x ∈ Q} and (ii) the >-labeled region >P′ coincides with
the set of all interval-points of the rational plane.

Proof. Let P = (P,σ) be a model of the formula ϕπ = ϕ ∧ ψπ. Without loss of
generality, we can assume that for every x ∈ Q, there is a π-labeled point of the
form p = (x,y), with y ∈ Q (this follows easily from Theorem 1). We can thus
view the region πP as the graph of a strictly increasing function fπ : Q → Q
such that, for every point p = (x,y), π ∈ σ(p) if and only if fπ(x) = y. Thus,
we can denote by f−1

π the inverse of fπ, which is a strictly increasing function as
well, and we can introduce the (monotone) transformation t that maps any point
p = (x,y) to the point t(p) = (x, f−1

π (y)). We then exploit such a transformation
to define a new labeling function σ ′ as follows: for every point p, we let σ ′(p) =
σ(t(p)). By definition of t, the resulting structure P ′ = (P,σ ′) is homeomorphic
to P and hence it also satisfies the formula ϕπ. Moreover, by construction, the
region πP′ coincides with the diagonal {(x, x) : x ∈ Q} and, similarly, the region
>P′ coincides with the set of all interval-points of the rational plane. 2

Proposition 1 yields a straightforward translation of any given formula ϕ of
DD̄YȲ-logic into an equi-satisfiable formula ϕ ′ of Cone Logic, which is obtained
by first replacing in ϕ every occurrence of the subformula 〈D〉α (resp., 〈D̄〉α,
〈Y〉α, 〈Ȳ〉α) with the formula (> ∧ α) (resp., (> ∧ α), (> ∧ α),

(> ∧ α)) and then adding the conjunct ψπ to the resulting formula. Taking
advantage of such a translation and of the decision procedure described in Section
5, we immediately obtain that the satisfiability problem for DD̄YȲ-logic is in
PSPACE. As a matter of fact, this subsumes previous results from [3]. Moreover,
from [11] we know that the satisfiability problem for D-logic, that is, the interval
temporal logic that features the subinterval operator 〈D〉 only, and hence that
for DD̄YȲ-logic, is PSPACE-hard. Summing up, we have the following corollary.

Corollary 1. The satisfiability problem for Cone Logic, interpreted over the
rational plane, and that for DD̄YȲ-logic, interpreted over the rational line, are
PSPACE-complete.

7 Conclusions

We would like to conclude by mentioning some natural generalizations of our
work. First, we may consider various possible extensions of Cone Logic. For
instance, we may think of evaluating formulas of (extended) Cone Logic over
multi-dimensional spaces (in general, 2n distinct cone-shaped directions exist in
a space with n dimensions) and/or to partition the two-dimensional space into
more than four cone-shaped cardinal directions (the same for higher-dimensional
spaces). In all such cases, we believe it possible to generalize the achieved results
in a rather natural way, preserving the tree pseudo-model property of the logic
and, possibly, the PSPACE-completeness of its satisfiability problem. Further
generalizations envisage the use of region-based spatial logics. As an example,
the correspondence between intervals over the rational line and points over the
rational plane can be lifted to higher-dimensional objects, proving, for instance,
that a suitable spatial logic based on rectangular regions, that is, 2-dimensional
intervals, is subsumed by a 4-dimensional point-based modal logic very similar

to Cone Logic. This establishes an interesting bridge between Cone Logic and
modal logics of topological relations. Finally, it is worth studying the satisfiability
problem for Cone Logic, and, similarly, forDD̄YȲ-logic, interpreted over different
(classes of) structures, e.g., the infinite discrete grid or the Euclidean plane.
Even though we expect the satisfiability problem to remain decidable, radically
different approaches might be necessary to cope with spaces having discrete or
Euclidean topologies.

References

[1] M. Aiello, I. Pratt-Hartmann, and J. van Benthem. Handbook of Spatial
Logics. Springer, 2007.

[2] J.F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the Association for Computing Machinery, 26(11):832–843, 1983.

[3] D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableau-based deci-
sion procedures for the logics of subinterval structures over dense orderings.
Journal of Logic and Computation, doi:10.1093/logcom/exn063, 2008.

[4] A.U. Frank. Qualitative spatial reasoning about distances and directions in
geographic space. Journal of Visual Languages and Computing, 3:343–371,
1992.

[5] D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
Dimensional Modal Logics: theory and applications, volume 148 of Studies
in Logic and the Foundations of Mathematics. Elsevier Science Publishers,
2003.

[6] K. Lodaya. Sharpening the undecidability of interval temporal logic. In
Proceedings of the 6th Asian Computing Science Conference on Advances
in Computing Science, volume 1961 of Lecture Notes in Computer Science,
pages 290–298. Springer, 2000.

[7] M. Marx and M. Reynolds. Undecidability of compass logic. Journal of
Logic and Computation, 9(6):897–914, 1999.

[8] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The complexity of
satisfiability for fragments of CTL and CTL∗. Electronic Notes in Theoret-
ical Computer Science, 223:201–213, 2008.

[9] A. Morales, I. Navarrete, and G. Sciavicco. A new modal logic for rea-
soning about space: spatial propositional neighborhood logic. Annals of
Mathematics and Artificial Intelligence, 51(1):1–25, 2007.

[10] S. Safra. On the complexity of ω-automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, pages 319–327.
IEEE Computer Society, 1988.

[11] I. Shapirovsky and V.B. Shehtman. Chronological future modality in
Minkowski spacetime. In Proceedings of the 4th Conference on Advances
in Modal Logic, pages 437–460. King’s College Publications, 2003.

[12] O. Stock. Spatial and Temporal Reasoning. Kluwer Academic, 1997.
[13] Y. Venema. Expressiveness and completeness of an interval tense logic.

Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.

	A Decidable Spatial Logic with Cone-Shaped Cardinal Directions
	Angelo Montanari, Gabriele Puppis, and Pietro Sala

